Table 3
Top Occupations for College Graduates Who Majored in Political Science

	Mean Salary	Percentage in Occupation
Bachelor's Degree Only		
Managers and administrators, n.e.c	92,762	9.4
Salespersons, n.e.c	92,203	4.8
Supervisors and proprietors of sales jobs	79,341	4.3
Managers and specialists in marketing	103,623	3.9
Legal assistants, paralegals, legal support	47,196	3.8
Chief executives and public administrators	155,730	2.6
Police, detectives, and private investigators	76,551	2.5
Computer systems analysts and computer scientists	68,499	2.3
Other financial specialists	102,000	2.3
Primary school teachers	41,145	2.3
Retail sales clerks	54,840	2.3
Secretaries	39,669	2.1
Customer service reps, investigators and adjusters	45,600	2.0
Management analysts	84,876	1.9
Personnel, HR, training, and labor relations	69,482	1.8
Financial managers	107,879	1.8
Accountants and auditors	66,851	1.6
Real estate sales occupations	63,108	1.6
Office supervisors	67,311	1.6
Military	62,835	1.5
Master's Degree		
Managers and administrators, n.e.c	115,406	12.0
Primary school teachers	55,084	7.0
Managers in education and related field	82,875	3.8
Chief executives and public administrators	171,816	3.8
Management analysts	95,174	3.5
Managers and specialists in marketing	119,866	3.4
Salespersons, n.e.c	95,625	2.7
Accountants and auditors	99,255	2.6
Supervisors and proprietors of sales jobs	104,132	2.4
Other financial specialists	134,739	2.4
Financial managers	151,839	2.4
Subject instructors (HS/college)	50,724	2.4
Computer systems analysts and computer scientists	86,059	2.4
Managers of service organizations, n.e.c.	77,911	2.3
Military	91,331	2.2
Secondary school teachers	56,091	1.9
Lawyers	116,180	1.8
Personnel, HR, training, and labor relations	93,602	1.6
Social workers	50,806	1.5
		(continued)

Table 3 (Continued)

	Mean Salary	Percentage in Occupation
Professional Degree		
Lawyers	133,225	72.9
Managers and administrators, n.e.c	136,805	3.1
Physicians	176,777	1.7
Chief executives and public administrators	185,774	1.5
Doctoral Degree		
Lawyers	118,819	33.9
Subject instructors (HS/college)	85,514	24.9
Managers in education and related field	115,863	4.8
Managers and administrators, n.e.c	126,890	4.5
Chief executives and public administrators	162,561	2.4
Management analysts	112,858	1.9
Physicians	161,025	1.6
Primary school teachers	71,863	1.5

sciences-the most likely competitors for our students-into more detailed majors. Regression models use 27 dummy variables for field of study, with political science majors as the reference group; thus, coefficients represent differences from political science majors with similar characteristics on factors that influence career success.

The three dependent variables are unemployment, educational attainment, and annual earnings. The first is coded 1 for those who are unemployed and o for those with jobs. I restrict the sample to 21-to-30-year-olds (those with the highest unemployment rates), who are not in school and are in the labor force. I run a logit analysis and convert coefficients on the majors to expected differences in unemployment rates from political science majors, using Stata's margins command to calculate average partial effects (APEs).

Second, educational attainment has four values (bachelor's, master's, professional, and doctoral degrees). I restrict the sample to those aged 34 and above. ${ }^{1}$ I use multinomial logit analysis, as the values do not have a clear order, and translate coefficients into probability differences using APEs.

Third, I run the earnings models on full-time, full-year employees aged 25 and above, who were not in school. The dependent variable is the natural logarithm of annual earnings, a coding that assumes that the independent variables have consistent percentage (rather than dollar) effects on earnings. I exponentiate the 27 major coefficients, subtract 1 , and multiply by 100 to yield expected percentage differences in earnings from political science majors.

I control for a variety of factors that affect career success-age/ experience, race/ethnicity/gender, sexual orientation, education, time, and location-using dummy variables for each unique value of each independent variable. (See the online technical appendix for justification.)

To tease out how majors affect earnings, I enter variables into the model sequentially. The first only includes major to show average percentage differences in earnings. The second adds educational attainment to compare those with the same degrees. The third adds race/ethnicity/gender, relationship status/ sexual orientation, military service, age, and year to see how the type of people who choose each major affects the apparent

